Physics–Dynamics Coupling with Element-Based High-Order Galerkin Methods: Quasi-Equal-Area Physics Grid
نویسندگان
چکیده
منابع مشابه
Dispersive Behaviour of High Order Discontinuous Galerkin Finite Element Methods
The dispersive properties of hp version discontinuous Galerkin finite element approximation are studied in three different limits. For the small wave-number limit hk → 0, we show the discontinuous Galerkin gives a higher order of accuracy than the standard Galerkin procedure, thereby confirming the conjectures of Hu and Atkins (J. Comput. Phys., 182(2):516– 545, 2002 ). If the mesh is fixed and...
متن کاملCoupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods
This paper presents three new coupling methods for interior penalty discontinuous Galerkin finite element methods and boundary element methods. The new methods allow one to use discontinuous basis functions on the interface between the subdomains represented by the finite element and boundary element methods. This feature is particularly important when discontinuous Galerkin finite element meth...
متن کاملShock detection and capturing methods for high order Discontinuous-Galerkin Finite Element Methods
High-order Discontinuous Galerkin (DG) methods have shown a lot of promise in being able to provide high accuracy and efficiency as well as the flexibility to handle complex unstructured grids. However in order to solve compressible flow problems effectively, we need to be able to detect discontinuities/shocks in the flow and capture them effectively such that the solution accuracy is not affec...
متن کاملHigh-Order Discontinuous Galerkin Methods for CFD
In recent years it has become clear that the current computational methods for scientific and engineering phenomena are inadequate for many challenging problems. Examples of these problems are wave propagation, turbulent fluid flow, as well as problems involving nonlinear interactions and multiple scales. This has resulted in a significant interest in so-called high-order accurate methods, whic...
متن کاملDiscontinuous Galerkin finite element methods for second order hyperbolic problems
In this paper, we prove a priori and a posteriori error estimates for a finite element method for linear second order hyperbolic problems (linear wave equations) based on using spacetime finite element discretizations (for displacements and displacement velocities) with (bilinear) basis functions which are continuous in space and discontinuous in time. We refer to methods of this form as discon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2019
ISSN: 0027-0644,1520-0493
DOI: 10.1175/mwr-d-18-0136.1